메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sang Gyu Lee (Yonsei University) Hee Soo Lee (Sejong University) Kyong Joo Oh (Yonsei University)
저널정보
계명대학교 자연과학연구소 Quantitative Bio-Science Quantitative Bio-Science Vol.39 No.2
발행연도
2020.11
수록면
127 - 135 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the financial market, many studies have been conducted to forecast stock prices, but there are limitations in accurately predicting them due to the high volatility of price and high noise. In addition, in prediction, traditional time series analysis techniques have been widely used, but there are methodological limitations. In this study, the noise of the stock price data is removed by applying a denoising filter, and the prediction performance is then improved using the deep learning long short-term memory (LSTM) model. In addition, as the length of time series data increases, we apply an attention mechanism to predict the KOSPI200 index to minimize the loss of information in the deep learning LSTM model. Four deep learning prediction models were conducted using daily and 30-minute data of the KOSPI200 index according to whether denoising filter and attention mechanisms were applied, and the learning performance was compared and analyzed. As a result, the deep learning LSTM model with both denoising filter and the attention mechanism showed smaller error between the actual and predicted values.

목차

ABSTRACT
1. Introduction
2. Proposed Model
3. Empirical Study
4. Conclusion
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-047-000077811