메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jihad Anwar Qadir (University of Raparin) Abdulbasit K. Al-Talabani (Koya University) Hiwa A. Aziz (University of Raparin)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.20 No.4
발행연도
2020.12
수록면
272 - 277 (6page)
DOI
10.5391/IJFIS.2020.20.4.272

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Isolated uttered word recognition has many applications in human–computer interfaces. Feature extraction in speech represents a vital and challenging step for speech-based classification. In this work, we propose a one-dimensional convolutional neural network (CNN) that extracts learned features and classifies them based on a multilayer perceptron. The proposed models are tested on a designed dataset of 119 speakers uttering Kurdish digits (0-9). The results show that both speaker-dependent (average accuracy of 98.5%) and speaker-independent (average accuracy of 97.3%) models achieve convincing results. The analysis of the results shows that 9 of the speakers have a bias characteristic, and their results are outliers compared to the other 110 speakers.

목차

Abstract
1. Introduction
2. Related Work
3. The Proposed Model
4. Rail Data Set
5. Results and Discussion
6. Conclusion
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-003-000060792