메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Aref Farhadipour Hadi Veisi Mohammad Asgari Mohammad Ali Keyvanrad
저널정보
한국전자통신연구원 [ETRI] ETRI Journal ETRI Journal 제40권 제5호
발행연도
2018.9
수록면
0 - 0 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Dysarthria is a degenerative disorder of the central nervous system that affects the control of articulation and pitch; therefore, it affects the uniqueness of sound produced by the speaker. Hence, dysarthric speaker recognition is a challenging task. In this paper, a feature‐extraction method based on deep belief networks is presented for the task of identifying a speaker suffering from dysarthria. The effectiveness of the proposed method is demonstrated and compared with well‐known Mel‐frequency cepstral coefficient features. For classification purposes, the use of a multi‐layer perceptron neural network is proposed with two structures. Our evaluations using the universal access speech database produced promising results and outperformed other baseline methods. In addition, speaker identification under both text‐dependent and text‐independent conditions are explored. The highest accuracy achieved using the proposed system is 97.3%.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0