메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서혜진 (동국대학교) 신정아 (동국대학교)
저널정보
한국영어학회 영어학 영어학 Volume.20
발행연도
2020.3
수록면
881 - 903 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study examined whether the predictability is associated with the behavioral reaction times in sentence processing. The information complexity measures have been proposed to quantify the predictability for word-by-word human sentence processing. The most traditional information complexity measure is known as surprisal, which calculates relative unexpectedness at each word in a sentence (Hale 2001, Levy 2005, 2008). The most traditional information complexity measure is known as surprisal, which calculates relative unexpectedness at each word in a sentence (Hale 2001, Levy 2005, 2008), and some studies suggested that surprisal and reading times are positively correlated (Monsalve, Frank and Vigliocco 2012, Smith and Levy 2013). In order to calculate surprisal, the previous studies used one of two ways: Corpus based language models and deep learning based language models. This study, however, used both of them to analyze human reading times, comparing surprisal calculated from corpus-based language models with that calculated from deep-learning-based language models. Many studies partially investigated either of them. In this study, human reading times were analyzed by comparing surprisal calculated from corpus-based language models with that calculated from deep-learning-based language models. The results showed that surprisal calculated from corpus-based language models is more suitable to explain the behavioral reaction time data. Although the deep learning technology performs very well in the field of natural language processing, it does not seem to be human-like processing. Nonetheless, this study can contribute to the development of deep learning technology as well as computational psycholinguistic research in that it tried to compare the outcomes of corpus and deep learning technology with human behavioral responses.

목차

1. 서론
2. 이론적 배경
3. 연구 방법
4. 연구 결과
5. 논의 및 결론
References

참고문헌 (48)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0