메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서혜진 (동국대학교) 이종현 (서울대학교) 신정아 (동국대학교)
저널정보
한국영어학회 영어학 영어학 Volume.19 Number.4
발행연도
2019.12
수록면
817 - 836 (20page)

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study examined the sentiment movement of Shakespeare’s plays (four tragedies and five comedies) using a deep learning technique. Sentiment analyses have been used in several fields to extract aspects of opinions using sentiment dictionaries such as ANEW, AFFINE, and VADER, which involve an evaluation of a word list for sentiment analysis. Nowadays, however, as deep learning algorithms develop, it became possible to conduct a sentiment analysis by using deep learning algorithms. This study directly compared the output of a simple deep learning model (trained with tweeters) with the output of a sentiment dictionary, VADER, targeting Shakespeare’s plays. The results showed that the simple deep learning model led to a similar performance with VADER for Shakespeare’s tragedies and outperformed the sentiment dictionary especially for Shakespeare’s comedies.

목차

1. 서론
2. 연구 방법
3. 연구 결과 및 논의
4. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-705-000242606