메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Dong-Jin Choi (Hoseo University) Ji-Hoon Han (Hoseo University) Sang-Uk Park (Hoseo University) Sun-Ki Hong (Hoseo University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
443 - 446 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Maintenance of an industrial electric motor is very important. The most commonly used algorithm for deep learning motor diagnosis using deep learning is CNN, which is one of the representative supervised learning algorithms. However, the failure diagnosis algorithm made with the CNN algorithm is vulnerable to this data. For this reason, an algorithm that complements this has been proposed, and that is to use the RNN and K-means algorithms. The method using RNN has a cyclic neural network structure, so it can grasp the similarity of data. K-means also uses the Euclidean distance method to grasp the similarity between data and classify the data using it. Due to the characteristics of these two algorithms, even if a disturbance is an input, if the similarity of data is high, it is determined as similar data. In this paper, two algorithms were used to perform fault diagnosis and two experiments were conducted to understand the differences and characteristics of the two algorithms. As a result of experiment 1 classifying only normal failures, experiment 2 experimented by increasing the number of failures to be classified. In the case of RNN, the results of experiments 1 and 2 showed similar accuracy. However, in the case of the algorithm using K-means, the accuracy decreased as the number of classifications increased.

목차

Abstract
1. INTRODUCTION
2. PROPOSED FAULT DIAGNOSIS ALGORITHM
3. EXPERIMENT
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001570226