메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jeonghoon Shin (Korea Electric Power Corporation Research Institute) Suchul Nam (Korea Electric Power Corporation Research Institute) Evangelous Farantatos (Electric Power Research Institute(EPRI)) Meng Wang (Rensselaer Polytechnic Institute) Tae-Eung Sung (Yonsei University (Wonju Campus))
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제11호
발행연도
2020.11
수록면
1,616 - 1,625 (10page)
DOI
10.5370/KIEE.2020.69.11.1616

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Phasor Measurement Units (PMUs) provide synchronized phasor measurements at much higher sampling rate than that in the traditional Supervisory Control And Data Acquisition (SCADA) system. Several synchrophasor-based algorithms and techniques have been and continue to be developed for real-time operation applications such as state estimation, stability analysis, disturbance detection, dynamic security assessment etc. However, synchrophasor data quality limits the incorporation of synchrophasor-based applications into control room operations environment and processes. The goal of this project is to develop methods that can improve synchrophasor data quality by recovering missing data reliably and efficiently. Data recovery refers to methods that estimate the values of missing data in the synchrophasor streams. Recently, modeless missing data recovery methods have been developed, that exploit the low-rank property of the spatial-temporal synchrophasor data blocks. A spatial-temporal synchrophasor data block can be considered as a matrix that is constructed by the measurements sampled at consecutive time instants with each row denoting the measurement of one certain channel across time. By exploiting the low-rank property of synchrophasor data matrices, the missing data recovery can be formulated as a low-rank matrix completion problem. The low-rank matrix completion problem has been extensively studied in the past few years and several algorithms have been developed to recover a low-rank matrix from partial observations. In this study, synchrophasor data analysis has been combined with low-rank matrix completion theory to develop a missing synchrophasor data recovery technique and tool.

목차

Abstract
1. Introduction
2. Low-rank property of PMU data
3. Limitations of existing low-rank methods in PMU data recovery
4. Hankel matrix and the low-rank property
5. OLAP-H: an online missing data recovery method
6. Simulation Results
7. Conclusions
References

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-560-001579703