메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안유선 (BEL Technology) 오은주 (BEL Technology) 이용준 (BEL Technology)
저널정보
한국생태환경건축학회 KIEAE Journal KIEAE Journal Vol.20 No.5(Wn.105)
발행연도
2020.10
수록면
143 - 149 (7page)
DOI
10.12813/kieae.2020.20.5.143

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: Recently, with the development of various data processing technologies, attention is focused on the development of data mining for buildings. To this end, researches on predicting the performance of buildings are increasing, but studies comparing or analyzing the accuracy of the weather forecast data used as input data are insufficient. In addition, the study compared with Korea is still incomplete. The purpose of this study is to compare short-term forecast data and observing data provided by the Korea Meteorological Administration and provide basic data that can be used to predict the validity of forecast data when predicting building performance. Method: Temperature, humidity, wind speed, cloud data of the weather forecast data and measurement data of five regions are classified and collected through the Korea Meteorological Administration, respectively, centering on five regions of Seoul, Busan, Daejeon, Gwangju, and Jeju, classified according to weather forecast time. The accuracy analysis is carried out using the CVRMSE, MBE. Result: The temperature and humidity forecast data for up to 4 hours show high accuracy compared to the measurement data, and forecast data for 5 to 6 hours vary depending on the region, but most show high accuracy. Through forecast data, up to 4 hours can be used as observing data, and data between 5 and 6 hours can be used by judging by region or purpose of use. In the case of wind speed and cloud, accuracy standards are not satisfied. This study is expected to be provided as basic data for various studies that apply forecast data.

목차

ABSTRACT
1. 서론
2. 기상청 예보 및 관측 데이터
3. 조사대상 및 분석
4. 비교 분석 결과
5. 결론
Reference

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-610-001560705