메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
양유정 (숙명여자대학교) 이기용 (숙명여자대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.47 No.10
발행연도
2020.10
수록면
999 - 1,007 (9page)
DOI
10.5626/JOK.2020.47.10.999

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
온라인 쇼핑몰 또는 오프라인 매장에서 각 고객이 구매한 상품들은 시간의 흐름에 따라 해당고객의 구매 이력을 형성한다. 또한 대부분의 경우 상품들에는 그들의 세부 분류를 나타내는 계층적 분류체계가 존재한다. 본 논문에서는 상품들의 구매 순서뿐만 아니라 상품들에 존재하는 계층적 분류체계까지 고려하는 새로운 구매 이력 간 유사도 측정 방법을 제안한다. 제안 방법은 기존의 대표적인 시퀀스 간 유사도 측정 방법인 동적 타임 워핑(dynamic time warping) 유사도를 상품들의 계층적 분류체계를 반영하도록 확장하였다. 제안 방법은 두 시퀀스 내 원소들을 비교할 때 원소들의 일치 여부에 따라 원소들 간의 유사도를 0 또는 1로만 부여하던 기존 방법과 달리 계층적 분류체계를 반영하여 0에서 1 사이의 실수 값을 부여한다. 이와 함께 본 논문은 제안하는 유사도 측정 방법에 대한 효율적인 계산 기법을 제안한다. 제안하는 계산 기법은 세그먼트 트리(segment tree)를 사용하여 계층적 분류체계 내에서 두 상품 간의 유사도를 매우 빠르게 계산한다. 본 논문에서는 실데이터에 기반한 다양한 실험을 통해 제안 방법이 계층적 분류체계가 존재하는 상품들의 구매 이력 간 유사도를 매우 효과적이고 빠르게 측정할 수 있음을 보인다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 방법
4. 성능 평가
5. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0