메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Tingjin Liu (South China University of Technology) Jiandong Lu (South China University of Technology) Hongyuan Liu (University of Tasmania)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.14 No.5
발행연도
2020.9
수록면
673 - 695 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper investigates the nonlinear behavior of wall-beam-strut joints with mechanical couplers, which are proposed for prefabricated underground constructions, under monotonic and cyclic loading conditions using full-scale experimental tests and three-dimensional finite element modelings. The nonlinear behavior of the joint is discussed in terms of the load–displacement curves, concrete cracking distributions, and strains in the reinforcements obtained from both the experimental tests and the numerical modeling. The comparison indicates that the trends of both load–displacement curves are similar, although the cracking, yield and ultimate loads of the joints determined by the numerical modeling are 2.5% lower, 2.6% higher and 3.8% higher, respectively, than those determined by the experimental tests. The numerical simulation can capture the concrete cracking process in the joint in the early loading stage but cannot accurately model the crack distribution in later stages. Moreover, the reinforcement strains and the skeleton curve from the numerical modeling show the same tendency as those from the experimental test, but it is difficult to compare their exact values, especially after yielding. The differences are believed due to the fact that the numerical modeling idealizes the materials and fails to model the slippage between the reinforcements and concrete after the concrete cracking. On the basis of the experimental and numerical investigations, it is concluded that the proposed wall-beam-strut joint has not only an ultimate bearing capacity that is at least 3 times higher than the design load but also a good ductility. Therefore, the design of the wall-beam-strut joint satisfies the requirements for the prefabricated underground construction.

목차

Abstract
1. Introduction
2. Experimental Tests
3. Nonlinear Numerical Analysis
4. Discussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-532-001290823