메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한공간정보학회 한국공간정보시스템학회 논문지 한국공간정보시스템학회 논문지 제11권 제2호
발행연도
2009.6
수록면
45 - 53 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The fast progress on multimedia data acquisition technologies has enabled collecting vast amount of videos in real time. Although the amount of information gathered from these videos could be high in terms of quantity and quality, the use of the collected data is very limited typically by human-centric monitoring systems. In this paper, we propose a framework for analyzing long traffic video using series of content-based analyses tools. Our framework suggests a method to integrate theses analyses tools to extract highly informative features specific to a traffic video analysis. Our analytical framework provides (1) re-sampling tools for efficient and precise analysis, (2) foreground extraction methods for unbiased traffic flow analysis, (3) frame property analyses tools using variety of frame characteristics including brightness, entropy, Harris corners, and variance of traffic flow, and (4) a visualization tool that summarizes the entire video sequence and automatically highlight a collection of frames based on some metrics defined by semi-automated or fully automated techniques. Based on the proposed framework, we developed an automated traffic flow analysis system, and in our experiments, we show results from two example traffic videos taken from different monitoring angles.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-452-001267858