메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한공간정보학회 한국공간정보시스템학회 논문지 한국공간정보시스템학회 논문지 제9권 제1호
발행연도
2007.6
수록면
105 - 115 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터마이닝은 데이터베이스에 저장되어 있는 많은 일반적인 정보들을 가지고 의미있는 정보를 찾아내는 것이다. 많은 데이터 마이닝 기법들 중에 클러스터링과 연관규칙을 다루는 연구가 많이 이뤄지고 있다. 클러스터링 기법에는 공간데이터를 다루거나 속성데이터(비공간 데이터)를 다루는 많은 기법들이 연구되고 있고, 연관규칙 또한 빈발 패턴을 찾아내는 연구가 활발히 진행되고 있다. 기존의 연구 중 apriori 연관규칙 알고리즘을 개선하는 방법으로 비트 클러스터링을 이용하는 방법이 있다. 우리는 apriori 연관규칙 보다 더 나은 성능을 나타내는 FP-Growth에 대해 살펴보고 FP-Growth의 문제점을 찾아 이를 해결하기 위한 방법으로 비트 클러스터링을 이용하여 해결할 수 있는지에 대해 연구하였다. 본 논문에서는 전체 데이터베이스를 비트 클러스터링을 통해 몇 개의 클러스터로 나누어 FP-Growth 방법에 사용할 것을 제안하였다. 이렇게 하면 기존의 FP-Growth 방법보다 더 나은 성능을 가질 수 있으며 이를 증명하기 위한 실험을 수행하였다. 실험은 패턴 마이닝 연구에서 사용하는 chess 데이터를 이용하였으며, 최소지지도를 다르게 적용하면서 FP-Tree를 생성하는 실험을 하였다. 최소지지도가 높은 경우에는 기존의 방법과 비슷한 결과를 얻었지만 그 외 경우에는 기존의 방법보다 본 논문에서 제안하는 방법이 더 우수한 결과를 얻을 수 있었다. 본 논문의 주요 결론으로서 비트 클러스터링을 이용한 방법이 상대적으로 우수한 데이터 마이닝 방법임을 정리하였으며, 아울러 GML 데이터를 위한 비트 클러스터링의 적용방법론에 대하여도 논의하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-452-001268628