메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한공간정보학회 한국공간정보시스템학회 논문지 개방형지리정보시스템학회논문지 제6권 제1호
발행연도
2004.6
수록면
19 - 28 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 메인 메모리 기반에서 R-Tree의 성능을 개선하기 위해 캐시를 고려한 색인 구조들이 제안되었다. 이들 색인 구조의 일반적인 캐시 성능 개선 방법은 엔트리 크기를 줄여 펜-아웃(fanout)을 증가시키고 하나의 노드에 더 많은 엔트리를 저장함으로써 캐시 실패를 최소화하는 것이다. 그러나 이러한 방법은 갱신시 줄어든 엔트리 정보를 복원하는 추가 연산으로 갱신 성능이 떨어지고, 노드간 이동시 발생하는 캐시 실패는 여전히 성능 저하의 큰 문제가 되고 있다. 본 논문은 이러한 문제점을 개선하기 위해 메인 메모리에서 R-Tree에 선반입을 적용한 확장된 메인 메모리 기반 R-Tree 색인 기법인 PR-TREE를 제안하고 평가하였다. PR-TREE는 R-Tree의 근본적인 변형없이 노드 크기를 선반입에 최적화되도록 확장하고, 노드간 이동시 자식 노드를 선반입하여 캐시 실패를 최소화하였다. PR-TREE는 실험에서 R-Tree보다 검색 연산에서는 최대 38%의 성능 향상을 보였고, 갱신 연산에서는 최대 30%의 성능 향상을 보였고, 또한 노드 분할 연산에서는 최대 67%의 성능 향상을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-452-001269367