메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Woo, Soo-Dong (Department of Plant Medicine, College of Agriculture, Life & Environment Sciences, Chungbuk National University) Je, Yeon-Ho (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) Jin, Byung-Rae (College of Natural Resources and Life Science, Dong-A University)
저널정보
한국응용곤충학회 Journal of Asia-Pacific Entomology Journal of asia-pacific entomology 제8권 제3호
발행연도
2005.1
수록면
257 - 262 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
A local strain of Spodoptera litura nucleopolyhedrovirus (SINPV-K1) was isolated from infected larvae of a Korean population of S. litura. Degenerate PCR primer set for the polyhedrin gene successfully amplified the partial polyhedrin gene of SINPV-K1. The sequencing results showed that the about 430 bp PCR product was a fragment of corresponding polyhedrin gene. Southern blot analysis of SINPV-K1 restriction fragments was performed by using 430 bp polyhedrin PCR product of SINPV-K1 as a probe. As the result, we identified the location of the polyhedrin gene within the approximately 6 kb EcoR I-, 3.5 kb Hind III-, 20 kb Xho I- and 4 kb Cla I-digested fragments, respectively. The Hind III 3.5kb fragment was cloned for sequencing the complete polyhedrin gene. Nucleotide sequence analysis indicated the presence of an open reading frame of 747 nucleotides, which could encode 249 amino acids with a predicted molecular mass of 31 kDa. The nucleotide sequences within the coding region of SINPV-K1 polyhedrin shared maximum 94.0% similarity with the polyhedrin gene from previous reported other SINPVs but were most closely related to Spodoptera littoralis NPV with 99.0% sequence identity. These suggest that the SINPV isolate from Korea is a different SINPV strain.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0