메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김형국 (Intelligent Multimedia Signal Processing, Kwangwoon University) 정진국 (Samsung Advanced Institute of Technology)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제26권 제2호
발행연도
2007.1
수록면
56 - 62 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents the automatic music emotion classification on acoustic data. A three-level structure is developed. The low-level extracts the timbre and rhythm features. The middle-level estimates the indication functions that represent the emotion probability of a single analysis unit. The high-level predicts the emotion result based on the indication function values. Experiments are carried out on 695 homogeneous music pieces labeled with four emotions, including pleasant, calm, sad, and excited. Three machine learning methods, GMM, MLP, and SVM, are compared on the high-level. The best result of 90.16% is obtained by MLP method.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0