메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김우일 (고려대학교 전자컴퓨터공학과) 고한석 (고려대학교 전자컴퓨터공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제23권 제6호
발행연도
2004.1
수록면
473 - 480 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 잡음 환경에서 강인한 음성 인식을 위하여 음성 모델을 기반으로 하는 효과적인 특징 보상 기법을 제안한다. 제안하는 특징 보상 기법은 병렬 결합된 혼합 모델 (PCMM)을 기반으로 한다. 기존의 PCMM 기반의 기법은 시간에 따라 변하는 잡음 환경을 반영하기 위하여 매 음성 입력마다 복잡한 과정의 혼합 모델 결합이 필요하다. 제안하는 기법에서는 다중의 혼합 모델을 보간하는 방법을 채용함으로써 시간에 따라 변하는 배경 잡음에 대응할 수 있다. 보다 신뢰성 있는 혼합 모델 생성을 위하여 데이터 유도 기반의 방법을 도입하고, 실시간 처리를 위하여 프레임에 동기화된 환경 사후 확률 예측 과정을 제안한다. 다중 모델로 인한 연산량 증가를 막기 위하여 혼합 모델을 공유하는 기법을 제안한다. 가우시안 혼합 모델 사이에 통계학적으로 유사한 요소들을 선택하여 공유에 필요한 공통 모델을 생성한다. Aurora 2.0 데이터베이스와 실제 자동차 주행 환경에서 수집된 음성 데이터베이스에 대한 성능 평가를 실시한다. 실험 결과로부터 제안한 기법이 모의 환경과 실제 잡음 환경에서 강인한 음성 인식 성능을 가져오고 연산량 감소에 효과적임을 확인한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0