메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강신재 (서울대학교) 한창우 (서울대학교) 권기수 (서울대학교) 김남수 (서울대학교)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제37권 제6호(융합기술)
발행연도
2012.6
수록면
492 - 496 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 잡음이 많이 존재할 경우 특징 보상 기법들의 불완전한 추정 방법으로 인하여 발생할 수 있는 불확실성 정보를 음성 인식의 디코딩에 반영해 줌으로써 좀 더 인식 성능을 향상시킬 수 있는 방법에 대한 연구이다. 기존의 특징 보상 기법들은 현재 시간에서의 깨끗한 특징 파라미터를 추정하는 단일점 추정 기법들이 대부분이다. 하지만 낮은 SNR 환경에서의 잘못된 추정 파라미터들이 음성 인식 엔진의 입력으로 사용될 경우 성능이 저하되기 때문에 추정된 파라미터의 불확실성 정보를 이용하여 디코딩을 해주면 추정 오류를 보완해줄 수 있다. 본 논문에서는 대표적인 Aurora-2 DB를 활용하여 적용된 기법의 성능 향상을 확인한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 상호 다중 모델
Ⅲ. 특징 보상 기법의 불확실성 정보를 이용한 디코딩
Ⅳ. 실험 결과
Ⅴ. 결론
References

참고문헌 (8)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-567-002649446