메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Oh, In-Hyeog (KT&G Central Research Institute) Jeh, Byong-Kwon (KT&G Central Research Institute) Ra, Do-Young (KT&G Central Research Institute) Kwak, Dae-Keun (KT&G Central Research Institute) Kim, Byeoung-Ku (KT&G Central Research Institute) Jo, Si-Hyung (KT&G Central Research Institute) Rhee, Moon-Soo (KT&G Central Research Institute)
저널정보
한국연초학회 한국연초학회지 한국연초학회지 제29권 제1호
발행연도
2007.1
수록면
23 - 29 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The measurement of physical properties such as apparent density and void fraction of tobacco materials, which is so bulky, is a main theme with regard to tobacco process, quality control, cigarette combustion and smoke generation. Except Solution Impregnation Method, there was no alternative method for measuring those properties in the porous material so far. However, experimental processes of that method are so complicated as to cost much time and labor, the main solution such as mercury to apply to the method is usually very hazard. Therefore, we had developed a new method to determine them easily in our other paper by the mathematical equations derived from the Ergun equation for the purpose of it, and then already evaluated our method through applying some basic data from Muramatsu et at. (1979) with regard to our developed equations. Then, we found our method best fit to experimental one (Oh et al., 2001). In this study we tried to establish our method to conveniently determine those physical properties. Especially, we have focused on the development the easy way to measure surface area and the volume of single shred in a tobacco column. As a result of that, we found that the computer image analyzer was best fit for it. Then, we have finally determined apparent density and void fraction for our domestic tobacco shred.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0