메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김현태 (Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University) 지전선랑 (Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto Universit) 서률귀구 (Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto Universit) 이인복 (National Institute of Agricultural Engineering, Suwon)
저널정보
한국농업기계학회 바이오시스템공학(구 한국농업기계학회지) 바이오시스템공학 제29권 제4호
발행연도
2004.1
수록면
341 - 346 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recent livestock people concern not only increase of production, but also superior quality of animal-breeding environment. So far, the optimization of the breeding and air environment has been focused on the production increase. In the very near future, the optimization will be emphasized on the environment for the animal welfare and health. Especially, cattle farming demands the precision livestock farming and special attention has to be given to the management of feeding, animal health and fertility. The management of individual animal is the first step for precision livestock farming and animal welfare, and recognizing each individual is important for that. Though electronic identification of a cattle such as RFID(Radio Frequency Identification) has many advantages, RFID implementations practically involve several problems such as the reading speed and distance. In that sense, computer vision might be more effective than RFID for the identification of an individual animal. The researches on the identification of cattle via image processing were mostly performed with the cows having black-white patterns of the Holstein. But, the native Korean and Japanese cattle do not have any definite pattern on the body. The purpose of this research is to identify the Japanese black cattle that does not have a body pattern using computer vision technology and neural network algorithm. Twelve heads of Japanese black cattle have been tested to verify the proposed scheme. The values of input parameters were specified and then computed using the face images of cattle. The images of cattle faces were trained using associate neural network algorithm, and the algorithm was verified by the face images that were transformed using brightness, distortion, and noise factors. As a result, there was difference due to transform ratio of the brightness, distortion, and noise. And, the proposed algorithm could identify 100% in the range from -3 to +3 degrees of the brightness, from -2 to +4 degrees of the distortion, and from 0% to 60% of the noise transformed images. It is concluded that our system can not be applied in real time recognition of the moving cows, but can be used for the cattle being at a standstill.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0