메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yoo, Seonguk (Department of Mathematics Education and RINS Gyeongsang National University)
저널정보
충청수학회 충청수학회지 충청수학회지 제31권 제4호
발행연도
2018.1
수록면
487 - 509 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The Truncated Moment Problem (TMP) entails finding a positive Borel measure to represent all moments in a finite sequence as an integral; once the sequence admits one or more such measures, it is known that at least one of the measures must be finitely atomic with positive densities (equivalently, a linear combination of Dirac point masses with positive coefficients). On the contrary, there are more general moment problems for which we aim to find a "signed" measure to represent a sequence; that is, the measure may have some negative densities. This type of problem is referred to as the General Truncated Moment Problem (GTMP). The Jordan Decomposition Theorem states that any (signed) measure can be written as a difference of two positive measures, and hence, in the view of this theorem, we are able to apply results for TMP to study GTMP. In this note we observe differences between TMP and GTMP; for example, we cannot have an analogous to the Flat Extension Theorem for GTMP. We then present concrete solutions to lower-degree problems.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0