메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
LOURDUSAMY, A. (Department of Mathematics, St. Xavier's College [Autonomous], Affiliated to Manonmaniam Sundaranar University) NELLAINAYAKI, S. SARATHA (Department of Mathematics, St. Xavier's College [Autonomous], Affiliated to Manonmaniam Sundaranar University) STEFFI, J. JENIFER (Department of Mathematics, St. Xavier's College [Autonomous], Affiliated to Manonmaniam Sundaranar University)
저널정보
한국전산응용수학회 Journal of applied mathematics & informatics Journal of applied mathematics & informatics 제37권 제3호
발행연도
2019.1
수록면
163 - 176 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move is defined as the removal of two pebbles from some vertex and the placement of one of those pebbles at an adjacent vertex. The t-pebbling number, $f_t(G)$, of a connected graph G, is the smallest positive integer such that from every placement of $f_t(G)$ pebbles, t pebbles can be moved to any specified vertex by a sequence of pebbling moves. A graph G has the 2t-pebbling property if for any distribution with more than $2f_t(G)$ - q pebbles, where q is the number of vertices with at least one pebble, it is possible, using the sequence of pebbling moves, to put 2t pebbles on any vertex. In this paper, we determine the t-pebbling number for the middle graph of a complete binary tree $M(B_h)$ and we show that the middle graph of a complete binary tree $M(B_h)$ satisfies the 2t-pebbling property.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0