메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Xu, Jin-Li (School of Mathematical Science, Heilongjiang University) Cao, Chong-Guang (School of Mathematical Science, Heilongjiang University) Wu, Hai-Yan (Basic department, DeQiang Business College)
저널정보
한국전산응용수학회 Journal of applied mathematics & informatics Journal of applied mathematics & informatics 제27권 제1호
발행연도
2009.1
수록면
97 - 103 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Suppose F is a field of characteristic not 2 and $F\;{\neq}\;Z_3$. Let $M_n(F)$ be the linear space of all $n{\times}n$ matrices over F, and let ${\Gamma}_n(F)$ be the subset of $M_n(F)$ consisting of all $n{\times}n$ involutory matrices. We denote by ${\Phi}_n(F)$ the set of all maps from $M_n(F)$ to itself satisfying A - ${\lambda}B{\in}{\Gamma}_n(F)$ if and only if ${\phi}(A)$ - ${\lambda}{\phi}(B){\in}{\Gamma}_n(F)$ for every A, $B{\in}M_n(F)$ and ${\lambda}{\in}F$. It was showed that ${\phi}{\in}{\Phi}_n(F)$ if and only if there exist an invertible matrix $P{\in}M_n(F)$ and an involutory element ${\varepsilon}$ such that either ${\phi}(A)={\varepsilon}PAP^{-1}$ for every $A{\in}M_n(F)$ or ${\phi}(A)={\varepsilon}PA^{T}P^{-1}$ for every $A{\in}M_n(F)$. As an application, the maps preserving inverses of matrces also are characterized.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0