메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Andrianov, A.A. (National Research Nuclear University MEPhI [Moscow Engineering Physics Institute]) Andrianova, O.N. (Institute for Physics and Power Engineering named after A.I.Leypunsky) Kuptsov, I.S. (National Research Nuclear University MEPhI [Moscow Engineering Physics Institute]) Svetlichny, L.I. (National Research Nuclear University MEPhI [Moscow Engineering Physics Institute]) Utianskaya, T.V. (JSC Engineering Center of Nuclear Containers)
저널정보
한국방사성폐기물학회 방사성폐기물학회지 방사성폐기물학회지 제16권 제4호
발행연도
2018.1
수록면
431 - 439 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Less mature nuclear reactor technologies are characterized by a greater uncertainty due to insufficient detailed design information, operational data, cost information, etc., but the expected performance characteristics of less mature options are usually more attractive in comparison with more mature ones. The greater uncertainty is, the higher economic risks associated with the project realization will be. Within a comparative evaluation of less and more mature nuclear reactor technologies, it is necessary to apply economic risk measures to balance judgments regarding the economic performance of less and more mature options. Assessments of any risk metrics involve calculating different characteristics of probability distributions of associated economic performance indicators and applying the Monte-Carlo method. This paper considers the applicability of statistical risk measures for different economic performance indicators within a trial case study on a comparative evaluation of less and more mature unspecified LWRs. The presented case study demonstrates the main trends associated with the incorporation of economic risk metrics into a comparative evaluation of less and more mature nuclear reactor technologies.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0