메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Andrianov, A.A. (National Research Nuclear University MEPhI [Moscow Engineering Physics Institute]) Andrianova, O.N. (Institute for Physics and Power Engineering named after A.I.Leypunsky) Kuptsov, I.S. (National Research Nuclear University MEPhI [Moscow Engineering Physics Institute]) Svetlichny, L.I. (National Research Nuclear University MEPhI [Moscow Engineering Physics Institute]) Utianskaya, T.V. (JSC Engineering Center of Nuclear Containers)
저널정보
한국방사성폐기물학회 방사성폐기물학회지 방사성폐기물학회지 제17권 제1호
발행연도
2019.1
수록면
47 - 58 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The paper presents the results of a multi-criteria comparative evaluation of 12 feasible Russian nuclear energy deployment scenarios with thermal and fast reactors in a closed nuclear fuel cycle. The comparative evaluation was performed based on 6 performance indicators and 5 different MCDA methods (Simple Scoring Model, MAVT / MAUT, AHP, TOPSIS, PROMETHEE) in accordance with the recommendations elaborated by the IAEA/INPRO section. It is shown that the use of different MCDA methods to compare the nuclear energy deployment scenarios, despite some differences in the rankings, leads to well-coordinated and similar results. Taking into account the uncertainties in the weights within a multi-attribute model, it was possible to rank the scenarios in the absence of information regarding the relative importance of performance indicators and determine the preference probability for a certain nuclear energy deployment scenario. Based on the results of the uncertainty/sensitivity analysis and additional analysis of alternatives as well as the whole set of graphical and attribute data, it was possible to identify the most promising nuclear energy deployment scenario under the assumptions made.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0