메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
NANETTI, Andrea (Nanyang Technological University) CHEONG, Siew Ann (Nanyang Technological University)
저널정보
아시아세계사학회 The Asian review of world histories The Asian review of world histories 제4권 제1호
발행연도
2016.1
수록면
3 - 34 (32page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This introduction is both a statement of a research problem and an account of the first research results for its solution. As more historical databases come online and overlap in coverage, we need to discuss the two main issues that prevent 'big' results from emerging so far. Firstly, historical data are seen by computer science people as unstructured, that is, historical records cannot be easily decomposed into unambiguous fields, like in population (birth and death records) and taxation data. Secondly, machine-learning tools developed for structured data cannot be applied as they are for historical research. We propose a complex network, narrative-driven approach to mining historical databases. In such a time-integrated network obtained by overlaying records from historical databases, the nodes are actors, while thelinks are actions. In the case study that we present (the world as seen from Venice, 1205-1533), the actors are governments, while the actions are limited to war, trade, and treaty to keep the case study tractable. We then identify key periods, key events, and hence key actors, key locations through a time-resolved examination of the actions. This tool allows historians to deal with historical data issues (e.g., source provenance identification, event validation, trade-conflict-diplomacy relationships, etc.). On a higher level, this automatic extraction of key narratives from a historical database allows historians to formulate hypotheses on the courses of history, and also allow them to test these hypotheses in other actions or in additional data sets. Our vision is that this narrative-driven analysis of historical data can lead to the development of multiple scale agent-based models, which can be simulated on a computer to generate ensembles of counterfactual histories that would deepen our understanding of how our actual history developed the way it did. The generation of such narratives, automatically and in a scalable way, will revolutionize the practice of history as a discipline, because historical knowledge, that is the treasure of human experiences (i.e. the heritage of the world), will become what might be inherited by machine learning algorithms and used in smart cities to highlight and explain present ties and illustrate potential future scenarios and visionarios.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0