메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Steinbauer, Julia Maria (Department of Dermatology, Regensburg University Hospital) Schreml, Stephan (Department of Dermatology, Regensburg University Hospital) Babilas, Philipp (Department of Dermatology, Regensburg University Hospital) Zeman, Florian (Center for Clinical Studies, Regensburg University Hospital) Karrer, Sigrid (Department of Dermatology, Regensburg University Hospital) Landthaler, Michael (Department of Dermatology, Regensburg University Hospital) Szeimies, Rolf-Markus (Department of Dermatology, Regensburg University Hospital)
저널정보
한국광과학회 Photochemical & photobiological sciences : an international journal Photochemical & photobiological sciences : an international journal 제8권 제8호
발행연도
2009.1
수록면
1,111 - 1,116 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Photodynamic therapy (PDT) with aminolevulinic acid (ALA) or methyl aminolevulinate (MAL) is an approved modality for the non-invasive treatment of actinic keratoses (AK) and basal cell carcinoma (BCC) offering excellent cosmetic outcome. However, pain during and after illumination is the most frequent and limiting side effect. The aim of this study was to precisely assess how reported pain during PDT is influenced by sex, age, treatment site, disease (AK/BCC) as well as the photosensitizer used. 467 lesions consisting of AK (primary treatments: n = 158; follow-up: n = 47) or BCC (primary treatments: n = 138; follow-up: 124) were treated by ALA- or MAL-PDT using metal halide lamps (580-750 nm). Pain was assessed during illumination using a continuous visual analogue scale (VAS). Factors predictive for higher pain levels during PDT are treatment of the head, treating AK and using ALA. The observed results may improve patient management and predict which level of pain to expect, and what kind of pain relief to prepare.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0