메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Shen, Baotang (College of Mining and Safety Engineering, Shandong University of Science and Technology) Barton, Nick (Nick Barton & Associates)
저널정보
테크노프레스 Geomechanics & engineering Geomechanics & engineering 제16권 제1호
발행연도
2018.1
수록면
35 - 47 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper investigates the mechanisms of tunnel spalling and massive tunnel failures using fracture mechanics principles. The study starts with examining the fracture propagation due to tensile and shear failure mechanisms. It was found that, fundamentally, in rock masses with high compressive stresses, tensile fracture propagation is often a stable process which leads to a gradual failure. Shear fracture propagation tends to be an unstable process. Several real case observations of spalling failures and massive shear failures in boreholes, tunnels and underground roadways are shown in the paper. A number of numerical models were used to investigate the fracture mechanisms and extents in the roof/wall of a deep tunnel and in an underground coal mine roadway. The modelling was done using a unique fracture mechanics code FRACOD which simulates explicitly the fracture initiation and propagation process. The study has demonstrated that both tensile and shear fracturing may occur in the vicinity of an underground opening. Shallow spalling in the tunnel wall is believed to be caused by tensile fracturing from extensional strain although no tensile stress exists there. Massive large scale failure however is most likely to be caused by shear fracturing under high compressive stresses. The observation that tunnel spalling often starts when the hoop stress reaches $0.4^*UCS$ has been explained in this paper by using the extension strain criterion. At this uniaxial compressive stress level, the lateral extensional strain is equivalent to the critical strain under uniaxial tension. Scale effect on UCS commonly believed by many is unlikely the dominant factor in this phenomenon.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0