메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mansouri, I. (Deptartment of Civil Engineering, Birjand University of Technology) Safa, M. (Deptartment of Civil Engineering, University of Malaya) Ibrahim, Z. (Deptartment of Civil Engineering, University of Malaya) Kisi, O. (Center for Interdisciplinary Research, International Black Sea University) Tahir, M.M. (UTM CRC, Institute for Smart Infrastructure and Innovative Construction, UTM) Baharom, S. (Department of Civil and Structural Engineering, National University of Malaysia) Azimi, M. (Department of Quantity Surveying, Universiti Teknologi Malaysia)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제60권 제3호
발행연도
2016.1
수록면
471 - 488 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study predicts the strength of rotary brace damper by analyzing a new set of probabilistic models using the usual method of multiple linear regressions (MLR) and advanced machine-learning methods of multivariate adaptive regression splines (MARS), Rotary brace damper can be easily assembled with high energy-dissipation capability. To investigate the behavior of this damper in structures, a steel frame is modeled with this device subjected to monotonic and cyclic loading. Several response parameters are considered, and the performance of damper in reducing each response is evaluated. MLR and MARS methods were used to predict the strength of this damper. Displacement was determined to be the most effective parameter of damper strength, whereas the thickness did not exhibit any effect. Adding thickness parameter as inputs to MARS and MLR models did not increase the accuracies of the models in predicting the strength of this damper. The MARS model with a root mean square error (RMSE) of 0.127 and mean absolute error (MAE) of 0.090 performed better than the MLR model with an RMSE of 0.221 and MAE of 0.181.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0