메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Phansri, B. (School of Engineering & Technology, Asian Institute of Technology) Charoenwongmit, S. (School of Engineering & Technology, Asian Institute of Technology) Warnitchai, P. (School of Engineering & Technology, Asian Institute of Technology) Shin, D.H. (Head Researcher, Korea Water Resources Corporation) Park, K.H. (School of Engineering & Technology, Asian Institute of Technology)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제36권 제4호
발행연도
2010.1
수록면
481 - 497 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The shaking table tests were conducted on two small-scale models (Model 1 and Model 2) to examine the earthquake-induced damage of a concrete gravity dam, which has been planned for the construction with the recommendation of the peak ground acceleration of the maximum credible earthquake of 0.42 g. This study deals with the numerical simulation of shaking table tests for two smallscale dam models. The plastic damage constitutive model is used to simulate the crack/damage behavior of the bentonite-concrete mixture material. The numerical results of the maximum failure acceleration and the crack/damage propagation are compared with experimental results. Numerical results of Model 1 showed similar crack/damage propagation pattern with experimental results, while for Model 2 the similar pattern was obtained by considering the modulus of elasticity of the first and second natural frequencies. The crack/damage initiated at the changing point in the downstream side and then propagated toward the upstream side. Crack/damage accumulation occurred in the neck area at acceleration amplitudes of around 0.55 g~0.60 g and 0.65 g~0.675 g for Model 1 and Model 2, respectively.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0