메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Beer, Michael (Department of Civil Engineering, National University of Singapore) Spanos, Pol D. (Ryon Endowed Chair in Engineering, Rice University)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제32권 제1호
발행연도
2009.1
수록면
71 - 94 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper a procedure for Monte Carlo simulation of univariate stationary stochastic processes with the aid of neural networks is presented. Neural networks operate model-free and, thus, circumvent the need of specifying a priori statistical properties of the process, as needed traditionally. This is particularly advantageous when only limited data are available. A neural network can capture the "pattern" of a short observed time series. Afterwards, it can directly generate stochastic process realizations which capture the properties of the underlying data. In the present study a simple feed-forward network with focused time-memory is utilized. The proposed procedure is demonstrated by examples of Monte Carlo simulation, by synthesis of future values of an initially short single process record.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0