메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Byung Do (Department of Mathematics Gangneung-Wonju National University)
저널정보
충청수학회 충청수학회지 충청수학회지 제29권 제4호
발행연도
2016.1
수록면
523 - 530 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let R be a 3!-torsion free semiprime ring, and let $D:R{\rightarrow}R$ be a Jordan derivation on a semiprime ring R. In this case, we show that [D(x), x]D(x) = 0 if and only if D(x)[D(x), x] = 0 for every $x{\in}R$. In particular, let A be a Banach algebra with rad(A). If D is a continuous linear Jordan derivation on A, then we see that $[D(x),x]D(x){\in}rad(A)$ if and only if $[D(x),x]D(x){\in}rad(A)$ for all $x{\in}A$.

목차

등록된 정보가 없습니다.

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0