메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mohammad Ashraf (Aligarh Muslim University) Aisha Jabeen (Jamia Millia Islamia)
저널정보
대한수학회 대한수학회논문집 대한수학회논문집 제35권 제3호
발행연도
2020.1
수록면
733 - 744 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $\mathfrak{R}$ be a commutative ring with unity, $\mathrm{A}$ and $\mathrm{B}$ be $\mathfrak{R}$-algebras, $\mathrm{M}$ be a $(\mathrm{A}, \mathrm{B})$-bimodule and $\mathrm{N}$ be a $(\mathrm{B}, \mathrm{A})$-bimodule. The $\mathfrak{R}$-algebra $\mathfrak{S}=\mathfrak{S}(\mathrm{A}, \mathrm{M}, \mathrm{N}, \mathrm{B})$ is a generalized matrix algebra defined by the Morita context $(\mathrm{A}, \mathrm{B}, \mathrm{M}, \mathrm{N}, \xi_{\mathrm{M}\mathrm{N}}, \Omega_{\mathrm{N}\mathrm{M}})$. In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0