메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정용규 (을지대학교 의료IT마케팅학과) 허고은 (을지대학교 의료산업학부 의료전산학전공)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제10권 제3호
발행연도
2010.1
수록면
97 - 102 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
의료 데이터 마이닝의 목적은 효율적인 알고리즘 및 기법을 통하여 각종 질병을 예측 분류하고 신뢰도를 높이는데 있다. 기존의 연구로 단일모델을 기반으로 하는 알고리즘이 존재하며 나아가 모델의 더 좋은 예측과 분류 정확도를 위하여 다중모델을 기반으로 하는 앙상블 기법을 적용한 연구도 진행되고 있다. 본 논문에서는 의료데이터의 보다 높은 예측의 신뢰도를 위하여 기존의 앙상블 기법에 사분위간 범위를 적용한 I-ENSEMBLE을 제안한다. 갑상선 기능 저하증 진단을 위한 데이터를 통해 실험 적용한 결과 앙상블의 대표적인 기법인 Bagging, Boosting, Stacking기법 모두 기존에 비해 현저하게 향상된 정확도를 나타내었다. 또한 기존 단일모델 기법과 비교하여 다중모델인 앙상블 기법에 사분위간 범위를 적용했을 때 더 뚜렷한 효과를 나타냄을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0