메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Na-Ra Kim (Ewha Womans University) Kyung-Shik Shin (Ewha Womans University) Hyunchul Ahn (Kookmin University)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제19권 제2호
발행연도
2013.6
수록면
55 - 71 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
부도예측을 위한 지식기반시스템에서 모델은 실적에 영향을 끼지는 주요한 요인이다. 예측 모형의 개발에 있어 초기 연구들은 통계기법 및 인공지능기법들을 이용하여 최고 실적을 가지는 단일 모델을 만드는데 주력하였다. 1980년대 중반 이후에는 다수 기술의 통합(하이브리드), 더 나아가 다수 모델의 결과의 결합(앙상블) 기법이 수많은 실험에서 개별 모델들보다 더 나은 결과를 보여왔다. 다수 모델들의 출력값을 결합하여 한 개의 최종 예측값을 산출하는 앙상블 모델링에서 결합기법은 앙상블의 예측정확도에 영향을 끼치는 중요한 이슈이다. 본 논문은 부도예측을 위한 앙상블 결합기법으로서 앙상블 멤버들이 다른 유형의 연속형 수치 출력값들을 산출하더라도 통일된 확신을 측정할 수 있는 확신 기반의 선택 접근법을 제안하고 이에 대한 앙상블 멤버 사이즈의 영향을 연구하였다. 실험 결과는 앙상블 멤버들의 생성 타입에 따라 결합하는 모델 개수를 변화시켰을 때 가장 많은 기본 모델들을 가지는 앙상블에서의 제안 결합기법이 부도예측에 가장 자주 사용되는 다른 방법들에 비해서도 가장 높은 실적을 가진다는 것을 보였다.

목차

1. Introduction
2. Review of Related Studies
3. Research Methodology
4. Model Development
5. Experiments
6. Concllusions
References
Abstract

참고문헌 (51)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-000-003172513