메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신동균 (인하대학교 컴퓨터공학부) 민하즈 우딘 아흐메드 (인하대학교 컴퓨터공학부) 김진우 (인하대학교 컴퓨터공학부) 이필규 (인하대학교 컴퓨터공학부)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제18권 제5호
발행연도
2018.1
수록면
171 - 177 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 많은 이미지 데이터 셋들은 일반적인 특성을 추출하기 위한 다양한 데이터 클래스와 특징을 가지고 있다. 하지만 이러한 다양한 데이터 클래스와 특징으로 인해 해당 데이터 셋으로 훈련된 물체 검출 딥러닝 모델은 데이터 특성이 다른 환경에서 좋은 성능을 내지 못하는 단점을 보인다. 이 논문에서는 하위 카테고리 기반 물체 검출 방법과 오픈셋 물체 검출 방법을 이용하여 이를 극복하고, 강인한 물체 검출 딥러닝 모델을 훈련하기 위해 능동 준지도 학습 (Active Semi-Supervised Learning)을 이용한 다중 분기 트리 구조를 제안한다. 우리는 이 구조를 이용함으로써 데이터 특성이 다른 환경에서 적응할 수 있는 모델을 가질 수 있고, 나아가 이 모델을 이용하여 이전의 모델보다 높은 성능을 확보 할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0