메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신창교 (한국과학기술원 항공우주공학과) 권현석 (한국과학기술원 항공우주공학과) 박유림 (한국과학기술원 항공우주공학과) 김천곤 (한국과학기술원 항공우주공학과)
저널정보
한국항행학회 한국항행학회논문지 한국항행학회논문지 제23권 제1호
발행연도
2019.1
수록면
84 - 89 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 복합재 항공기의 비행 데이터를 활용한 기계학습 기반 구조건전성 모니터링 시스템 연구의 예비 연구이다. 본 연구에서는 구조건전성 모니터링에 이용되기에 가장 적합한 기계학습 알고리즘을 선별하고, 실 기체 데이터에 대한 적용을 위해 차원 축소를 수행하였다. 이를 위해 외팔보를 통해 모사된 항공기 날개 구조와 부가 질량을 통해 손상 모사 실험을 진행하고, 분류 알고리즘을 통해 데이터를 손상의 위치와 정도에 따라 구분하였다. 이를 위해 FBG (fiber bragg grating) 센서를 부착한 외팔보의 진동 실험을 통해 정상상태와 12개의 손상상태에 대한 데이터를 취득하고, MATLAB 환경에서 tree, discriminant, SVM (support vector machine), kNN, ensemble 알고리즘의 비교와 파라미터 튜닝을 통해 가장 적합한 알고리즘을 도출하였다. 또한 NCA (neighborhood component analysis)를 이용한 특징 선택을 통해, 실 기체에서 나올 수 있는 고차원 데이터의 관리를 위해 필요한 차원 축소를 수행하였다. 그 결과, quadratic SVM이 NCA를 적용하지 않은 모델에서 98.7%, NCA를 적용한 모델에서 95.9%로 가장 높은 정답률을 보였다. 또한 NCA 적용 후 모델의 예측 속도, 학습 시간, 용량이 모두 향상되었다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0