메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신동욱 (국립암센터 국가암관리사업단) 신종각 (한국고용정보원) 정기택 (경희대학교 의료경영학과)
저널정보
한국병원경영학회 한국병원경영학회지 병원경영학회지 제13권 제3호
발행연도
2008.1
수록면
69 - 93 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Rising healthcare cost is a global phenomenon that justifies governments' introduction of 'incentive regulation' plan for the improvement of hospital efficiency. A number of previous studies tried to evaluate the efficiency of healthcare organization by using Data Envelopment Analysis(DEA), a common efficiency benchmarking method. However, there is a concern that this kind of efficiency evaluation could induce "quantity-quality trade-off". Moreover, as quality aspect is especially important in terms of 'effectiveness' of health care, it should be considered in efficiency evaluation of healthcare organization. A number of different models were tried so far to incorporate quality aspect into DEA, however, none is universally recognized as a standard. Thus, in this study, previous quality-incorporating DEA models were categorized into 6 types according to the way of incorporating quality aspect, and strengths and limitations of each type were reviewed with a set of artificial data as an example. Based on this review, a new quality-incorporating efficiency evaluation model, named Quality-adjusted output DEA(QAO-DEA), was suggested. As an exploratory empirical analysis, technical efficiency of human resource were measured with different quality-incorporating DEA models, using 2004 data from National University Hospitals. In conclusion, Quality-adjusted output DEA(QAO-DEA) model seems to be one of the most desirable alternatives to incorporate quality aspect in efficiency evaluation of hospital, and deserves the consideration as a policy tool to induce simultaneous improvement of both efficiency and quality.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0