메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
공동수 (경기대학교 바이오융합학부) 김범철 (강원대학교 환경융합학부)
저널정보
한국물환경학회 한국물환경학회지 한국물환경학회지 제35권 제4호
발행연도
2019.1
수록면
340 - 351 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this study, the relationship between trophic state indices was analyzed based on the monthly or weekly water quality data of 81 lakes (mostly man-made) in Korea between 2013-2017. Carlson's $TSI_C$ and Aizaki's $TSI_m$ were calculated using the summer (Jun.-Sep.) average data at the upper water layer. The previous Korean trophic state index ($TSI_{KO}$) and the newly suggested index ($TSI_{KON}$) was calculated using the annual average data at the whole layer and at the upper layer, respectively. While previous trophic state index (TSI) such as Carlson's TSI included logarithmic function, we devised newly Monod-type $TSI_{KON}$(Chl) that is 50 when half-saturation concentration of chlorophyll ${\alpha}$ ($Chl.{\alpha}$) measured by UNESCO-method is $10{\mu}gL^{-1}$. MMF-type $TSI_{KON}$(TP) was derived based on the relationship between TP and $Chl.{\alpha}$. A comprehensive $TSI_{KON}$ was decided as the larger one of the two $TSI_{KON}$ values. The range of previous TSI was usually 40-50 for the mesotrophic state, which seemed narrow to discriminate trophic characteristics of the class. The upper limits of $TSI_{KON}$ for oligotrophic, mesotrophic, and eutrophic state were set to 23, 50 and 75, respectively. Classification by $TSI_C$ and $TSI_m$ showed higher frequency of eutrophic class compared to $TSI_{KO}$ and $TSI_{KON}$. This means that the estimation by TSIs developed in foreign natural lakes can lead to distorted results in the classification of the trophic state of Korean lakes. This is due to the decrease of transparency by non-algal material and the reduction in phosphorus availability to algal growth, particularly in Monsoon period.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0