메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
백종진 (성균관대학교 건설환경연구소) 정재환 (성균관대학교 수자원전문대학원) 박종민 (메릴랜드대학교 건설환경공학과) 최민하 (성균관대학교 수자원전문대학원)
저널정보
한국수자원학회 한국수자원학회논문집 한국수자원학회논문집 제52권 제1호
발행연도
2019.1
수록면
11 - 19 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (12)

초록· 키워드

오류제보하기
본 연구에서는 인공위성 및 재분석 자료인 Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MOD16의 실제증발산량 산출물을 활용하여 한국수자원조사기술원(Korea Institute of Hydrological Survey, KIHS)에서 관리하고 있는 청미천(cheongmicheon farmland site, CFK)과 설마천(seolmacheon site, SMK) flux tower에서 검증하였고, Triple collocation (TC) 방법을 활용하여 자료간의 불확실성 및 상관성분석을 수행하였다. 플럭스타워와의 검증 결과에서는 전반적으로 GLEAM>GLDAS>MOD16순으로 좋은 결과를 나타내었으며, 세가지 산출물의 조합(S1: flux tower vs. GLDAS vs. MOD16, S2: flux tower vs. GLDAS vs. GLEAM, S3: flux tower vs. GLEAM vs. MOD16)을 통한 TC 결과에서는 청미천(설마천)에서 GLEAM>GLDAS>MOD16>flux tower (GLDAS>GLEAM>MOD16>flux tower)순으로 좋은 결과를 나타내었다. TC 분석 결과에서 Flux tower의 error variance와 correlation coefficient가 상대적으로 좋은 결과를 나타내지 못하였으므로, 한반도 지역에서 인공위성과 재분석 자료(GLDAS vs. GLEAM vs. MOD16)만을 활용하여 TC를 적용하였다. 그 결과, GLDAS와 GLEAM이 한반도 영역에서 낮은 error variance 와 높은 correlation coefficient를 나타낸 반면, MOD16의 경우, 농지에서 낮은 correlation coefficient과 높은 error variance를 나타내었다.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0