메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최갑근 (광운대학교 대학원 컴퓨터공학과) 김순협 (광운대학교 대학원 컴퓨터공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제29권 제7호
발행연도
2010.1
수록면
468 - 474 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
음성인식의 실용화에 가장 저해되는 요소는 배경잡음과 채널잡음에 의한 왜곡이다. 일반적으로 배경잡음은 음성인식 시스템의 성능을 저하시키고 이로 인해 사용 장소의 제약을 받게 한다. DSR (Distributed Speech Recognition) 기반의 음성인식 역시 이와 같은 문제로 성능 향상에 어려움을 겪고 있다. 이러한 문제를 해결하기 위해 다양한 잡음제거 알고리듬이 사용되고 있으나 낮은 SNR환경에서 부정확한 잡음추정으로 발생하는 스펙트럼 손상과 잔존 잡음은 음성인식기의 인식환경과 학습 환경의 불일치를 만들게 되어 인식률을 저하시키는 원인이 된다. 본 논문에서는 이와 같은 문제를 해결하기 위해 잡음제거 알고리듬으로 MMSE-STSA 방법을 사용하였고 손상된 스펙트럼을 보상하기 위해 Ideal Binary Mask를 이용하였다. 잡음환경 (SNR 15 ~ 0 dB)에 따른 실험결과 제안된 방법을 사용했을 때 향상된 스펙트럼을 얻을 수 있었고 향상된 인식성능을 확인했다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0