메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Liu, Mingxing (Department of Pharmacy, College of Bioengineering, Hubei University of Technology, Department of Chemistry, Tsinghua University) Li, Huifang (Department of Chemistry, Tsinghua University, Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine) Luo, Guoan (Department of Chemistry, Tsinghua University) Liu, Qingfei (Department of Chemistry, Tsinghua University) Wang, Yiming (Department of Chemistry, Tsinghua University)
저널정보
대한약학회 Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea 제31권 제4호
발행연도
2008.1
수록면
547 - 554 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The objective of this study is to investigate the pharmacokinetics and biodistribution of free breviscapine (BVP) and coated BVP-loaded poly (D, L-lactic acid) nanoparticles (BVP-PLA-NPs) in rats after i.v. administration. Coated BVP-PLA-NPs were prepared by the spontaneous emulsification solvent diffusion method and characterized. The BVP content in the NPs, the biological samples and in vitro release was measured by the high-performance liquid chromatography (HPLC). The mean sizes of coated BVP-PLA-NPs were 177 and 319 nm with a narrow distribution and smooth sphere shapes, entrapment efficiency of 86.9% and 93.1%, respectively. Drug release profiles in phosphate buffer and plasma exhibited a biphasic release phenomenon. After i.v. administration of free BVP and NPs suspensions in rats, area under plasma concentration-time curve and elimination $t_{1/2}$ were increased 9.3-fold and 10.9-fold for 177 nm of NPs, and 4.4-fold and 17.1-fold for 319 nm of NPs compared with that of free BVP, respectively. NPs were mainly distributed in liver, spleen, heart and brain. In addition, NPs could penetrate blood brain barrier (BBB) and the particle size had some effect on pharmacokinetics and biodistribution. Coated BVP-PLA-NPs could effectively avoid the capture by the reticuloendothelial system and prolong the half-life of BVP. Moreover, these NPs could penetrate BBB and enhance the accumulation of BVP in brain.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0