메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Wang, Yongzhong (Department of Pharmaceutics, School of Pharmacy, Fudan University, Department of Bioengineering, School of Sciences, Anhui University) Li, Yajuan (Department of Pharmaceutics, School of Pharmacy, Fudan University) Zhang, Lijun (Department of Pharmaceutics, School of Pharmacy, Fudan University) Fang, Xiaoling (Department of Pharmaceutics, School of Pharmacy, Fudan University, Department of Bioengineering, School of Life Sciences, Anhui University)
저널정보
대한약학회 Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea 제31권 제4호
발행연도
2008.1
수록면
530 - 538 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A novel polymeric micelle formulation of paclitaxel (PTX) has been prepared with the purpose of improving in vitro release as well as prolonging the blood circulation time of PTX in comparison to a current PTX formulation, Taxol injection. This work was designed to investigate the preparation, in vitro release, in vivo pharmacokinetics and tissue distribution of PTX-loaded Pluronic P105 micellar system. The micelles were prepared by thin-film method using a nonionic surfactant Pluronic P105 and a hydrophobic anticancer drug, PTX. With a dynamic light scattering sizer and a transmission electron microscopy, it was shown that the PTX-loaded micelles had a mean size of approximately 24 nm with narrow size distribution and a spherical shape. The in vitro release profiles indicated that the release of PTX from the micelles exhibited a sustained release behavior. A similar phenomenon was also observed in a pharmacokinetic study in rats, in which $t_{1/2{\beta}}$ and AUC of the micelle formulation were 4.9 and 5.3-fold higher than that of Taxol injection. The biodistribution study in mice showed that the PTX-loaded micelles not only decreased drug uptake by liver, but also prolonged drug retention in blood and increased distribution of drug in lung, spleen and kidney. These results suggested that the P105 polymeric micelles may efficiently load, protect and retain PTX in both in vitro and in vivo environments, and could be a useful drug carrier for i.v. administration of PTX.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0