메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lee Sangman (Department of Agricultural Chemistry, Division of Applied Biology and Chemistry) Kang Beom Sik (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
저널정보
한국식물학회 식물학회지 식물학회지 제48권 제1호
발행연도
2005.1
수록면
32 - 38 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Phytochelatin (PC) is involved in the detoxification of harmful, non-essential heavy metals and the homeostasis of essential heavy metals in plants. Its synthesis can be induced by either cadmium (Cd) or copper (Cu), and can form stable complexes with either element. This might suggest that PC has an important role in determining plant tolerance to both. However, this is not clearly apparent, as evidenced by a PC-deficient and Cd-sensitive Arabidopsis mutant (cad1-3) that shows no significant increase in its sensitivity to copper. Therefore, we investigated whether the mechanism for Cu tolerance differed from that for Cd by analyzing copper sensitivity in Cd-tolerant transgenics and Cd-sensitive mutants of Arabidopsis. Cadmium-tolerant transgenic plants that over-expressed A. thaliana phytochelatin synthase 1 (AtPCS1) were not tolerant of copper stress, thereby supporting the hypothesis that PC is not primarily involved in this tolerance mechanism. We also investigated Cu tolerance in cad2-1, a Cd-sensitive and glutathione (GSH)-deficient Arabidopsis mutant. Paradoxically, cad2-1 was more resistant to copper stress than were wild-type plants. This was likely due to the high level of cysteine present in that mutant. However, when the growth medium was supplemented with cysteine, the wild types also exhibited copper tolerance. Moreover, Saccharomyces cerevisiae that expressed AlPCSI showed tolerance to Cd but hypersensitivity to Cu. All these results indicate that PC is not a major factor in determining copper tolerance in plants.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0