메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Choi, Jai-Won (Office of Research and Methodology, National Center for Health Statistics) Nandram, Balgobin (Department of Mathematical Sciences, Worcester Polytechnic Institute)
저널정보
한국통계학회 JKSS(Journal of the Korean Statistical Society) Journal of the Korean Statistical Society 제32권 제2호
발행연도
2003.1
수록면
121 - 150 (30page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The National Health Interview Survey (NHIS) is one of the surveys used to assess the health status of the US population. One indicator of the nation's health is the total number of doctor visits made by the household members in the past year, There is a substantial nonresponse among the sampled households, and the main issue we address here is that the nonrespones mechanism should not be ignored because respondents and nonrespondents differ. It is standard practice to summarize the number of doctor visits by the binary variable of no doctor visit versus at least one doctor visit by a household for each of the fifty states and the District of Columbia. We consider a nonignorable nonresponse model that expresses uncertainty about ignorability through the ratio of odds of a household doctor visit among respondents to the odds of doctor visit among all households. This is a hierarchical model in which a nonignorable nonresponse model is centered on an ignorable nonresponse model. Another feature of this model is that it permits us to "borrow strength" across states as in small area estimation; this helps because some of the parameters are weakly identified. However, for simplicity we assume that the hyperparameters are fixed but unknown, and these hyperparameters are estimated by the EM algorithm; thereby making our method Bayes empirical Bayes. Our main result is that for some of the states the nonresponse mechanism can be considered non-ignorable, and that 95% credible intervals of the probability of a household doctor visit and the probability that a household responds shed important light on the NHIS.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0