메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Gwang-Chul (College of Agriculture & Life Sciences, Seoul National University) Lee, Jun-Jae (College of Agriculture & Life Sciences, Seoul National University)
저널정보
한국목재공학회 목재공학(Journal of the Korean Wood Science and Technology) 목재공학 제28권 제4호
발행연도
2000.1
수록면
72 - 82 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Attempts were made to analyze the behavior of single and multiple-bolted connections through theoretical methods such as European yield theory, empirical approaching method, and semi-rigid theory instead of many experimental methods that have been actually inefficient and non-economical. In the case of a single-bolted connection, if accurate characteristic values of a material could be guaranteed, it would be more convenient and economical to perform the behavior analysis using a model based on the semi-rigid theory, instead of the existing complex yield model, or the empirical formula which produces errors, giving different results from the actual ones. If the variables of equation determining the load and deformation could be appropriately controlled, the analytical method in conjunction with a semi-rigid theory could be effectively applied to obtain the desirably predicted value, considering that the appropriate solution could be derived through a simpler equation using a less difficult method compared to the existing yield model. It is concluded that analytical method with semi-rigid theory can be used in the behavior analysis of bolted connection because our developed method showed excellent analysis ability of behavior until number of bolt is two. Although our analytical method has the disadvantage that the number of bolt is limited to two, it is concluded that it has the advantage than numerical method which complicated and time-consuming.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0