메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Williams, F.W. (Division of Structural Engineering, School of Engineering, University of Wales Cardiff) Kennedy, D. (Division of Structural Engineering, School of Engineering, University of Wales Cardiff) Wu, Gaofeng (Division of Structural Engineering, School of Engineering, University of Wales Cardiff) Zhou, Jianqing (Division of Structural Engineering, School of Engineering, University of Wales Cardiff)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제4권 제5호
발행연도
1996.1
수록면
553 - 568 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Finite element stiffness matrix methods are presented for finding natural frequencies (or buckling loads) and modes of repetitive structures. The usual approximate finite element formulations are included, but more relevantly they also permit the use of 'exact finite elements', which account for distributed mass exactly by solving appropriate differential equations. A transcendental eigenvalue problem results, for which all the natural frequencies are found with certainty. The calculations are performed for a single repeating portion of a rotationally or linearly (in one, two or three directions) repetitive structure. The emphasis is on rotational periodicity, for which principal advantages include: any repeating portions can be connected together, not just adjacent ones; nodes can lie on, and members along, the axis of rotational periodicity; complex arithmetic is used for brevity of presentation and speed of computation; two types of rotationally periodic substructures can be used in a multi-level manner; multi-level non-periodic substructuring is permitted within the repeating portions of parent rotationally periodic structures or substructures and; all the substructuring is exact, i.e., the same answers are obtained whether or not substructuring is used. Numerical results are given for a rotationally periodic structure by using exact finite elements and two levels of rotationally periodic substructures. The solution time is about 500 times faster than if none of the rotational periodicity had been used. The solution time would have been about ten times faster still if the software used had included all the substructuring features presented.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0