메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김회린 (한국정보통신대학교 공학부 음성인식기술연구실) 고진석 (한국정보통신대학교 공학부 음성인식기술연구실)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제23권 제2호
발행연도
2004.1
수록면
180 - 186 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
음성 신호에 존재하는 잡음은 음성 인식기의 성능을 현저하게 감소시킨다. 이것은 잡음이 훈련 조건과 인식 조건 사이의 불일치를 가져오기 때문이다. 본 논문에서는 이러한 불일치를 최소화하기 위해서 통계적 특징벡터의 추출방법을 개선하기 위한 방법을 연구하였다. 밴드 SNR에 따라 잡음 스펙트럼의 차감 레벨을 조절하는 기존의 멀티 밴드 잡음 차감법 (MSS)을 개선하기 위하여 잡음 정규화 상수를 이용하여 잡음 스펙트럼의 차감 레벨을 보다 정확하게 조절하는 방법 (M-MSS)을 제시하였다. 다음으로, 기존의 통계적 특징벡터 추출방법 (SFE)에서 잡음 차감법을 파워 스펙트럼 영역에 적용함으로써 성능을 개선하였다(M-SFE). 마지막으로, 위의 두 가지 방법의 장점을 결합하기 위해서 밴드 SNR에 근거한 통계적 특징벡터 추출방법 (MMSS-MSFE)을 제안하였다. 제안된 방법들은 다양한 잡음 환경 하에서 화자독립 고립 단어 인식으로 성능을 평가하였다. 기본적인 잡음 차감법 (SS)에 비하여 M-MSS, M-SFE와 MMSS-MSFE의 평균 에러율은 각각 18.6%, 15.1%와 33.9% 감소하였다. 위의 결과로부터 제안한 방법이 잡음에 강인한 음성인식을 위해 매우 효과적임을 입증하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0