메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Sung-Ill (Department of Computer Science and Systmes Engineering, Miyazaki University) Kitazoe, Tetsuro (Department of Computer Science and Systmes Engineering, Miyazaki University) Chung, Hyun-Yeol (Dept. of Information and communication Engineering, Yeungnam Univ.)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제17권 제4호
발행연도
1998.1
수록면
11 - 16 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
For large vocabulary speech recognition using HMMs, context-dependent subword units have been often employed. However, when context-dependent phone models are used, they result in a system which has too may parameters to train. The problem of too many parameters and too little training data is absolutely crucial in the design of a statistical speech recognizer. Furthermore, when building large vocabulary speech recognition systems, unseen triphone problem is unavoidable. In this paper, we propose the modified phonetic decision tree algorithm for the automatic prediction of unseen triphones which has advantages solving these problems through following two experiments in Japanese contexts. The baseline experimental results show that the modified tree based clustering algorithm is effective for clustering and reducing the number of states without any degradation in performance. The task experimental results show that our proposed algorithm also has the advantage of providing a automatic prediction of unseen triphones.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0