메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김진백 (동명정보대학교 정보경영사회학부)
저널정보
한국수산경영학회 수산경영론집 수산경영론집 제34권 제1호
발행연도
2003.1
수록면
87 - 115 (29page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Korean fisheries societies have had many difficulties for economic, social, and living circumstances. The government has tried many projects to improve these circumstances. But the results of the projects did not come up to his expectation. Recently, blue tourism is emerging as an alternative for improving these circumstances. So we applied a tourism value chain model for identifying what value activities and resources needed. According to the tourism value chain model, it was identified that there were six different value activities, i. e. advertising, reserving, moving, experiencing, returning, and after services of blue tourism. To identify which of the resources are sufficient or not in Korean blue tourism, we compared the required resources with actual ones. It was identified that Korean fisheries societies have so sufficient H/W related resources, but not IT related S/W resources, humanware-based resources, some industrial H/W resources and sociocultural resources. Therefore, Korean blue tourism will be activated, we have to concentrate our efforts on supplementing some scant blue tourism resources, i.e. S/W and humanware related resources and developing a variety of tourism programs to H/W resources. Generally, sustainable tourism needs all of S/W, H/W, and humanware resources. So we suggest several policies for the aspects of S/W, H/W, and humanware resources to activate blue tourism. But before carrying these policies out, they should be tested by field studies. And tourism motivations will be also studied because effective tourism marketing is impossible without an understanding of consumers' motivations.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0