메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김창연 (한국과학기술원 경영공학) 안병석 (수원대학교 경영회계학부) 조성식 (한국과학기술원 경영공학) 김성희 (KAIST 테크노경영대학원)
저널정보
한국경영정보학회 경영정보학연구 경영정보학연구 제9권 제4호
발행연도
1999.1
수록면
23 - 40 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper proposes a hybrid intelligent system that predicts the failure of firms based on the past financial performance data, combining neural network and rough set approach, We can get reduced information table, which implies that the number of evaluation criteria such as financial ratios and qualitative variables and objects (i.e., firms) is reduced with no information loss through rough set approach. And then, this reduced information is used to develop classification rules and train neural network to infer appropriate parameters. Through the reduction of information table, it is expected that the performance of the neural network improve. The rules developed by rough sets show the best prediction accuracy if a case does match any of the rules. The rationale of our hybrid system is using rules developed by rough sets for an object that matches any of the rules and neural network for one that does not match any of them. The effectiveness of our methodology was verified by experiments comparing traditional discriminant analysis and neural network approach with our hybrid approach. For the experiment, the financial data of 2,400 Korean firms during the period 1994-1996 were selected, and for the validation, k-fold validation was used.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0